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Abstract— This paper presents an overview of a newly de-
veloped Coupled Layer Architecture for Robotic Autonomy
(CLARALy), which is designed for improving the modularity
of system software while more tightly coupling the interac-
tion of autonomy and controls. First, we frame the problem
by briefly reviewing previous work in the field and describing
the impediments and constraints that been encountered. Then
we describe why a fresh approach of the topic is warranted,
and introduce our new two-tiered design as an evolutionary
modification of the conventional three level robotics architec-
ture. The new design features a tight coupling of the planner
and executive in one Decision Layer, which interacts with a
separate Functional Layer at all levels of system granularity.
The Functional Layer is an object oriented software hierarchy
that provides basic capabilities of system operation, resource
prediction, state estimation, and status reporting. The Deci-
sion Layer utilizes these capabilities of the Functional Layer
to achieve goals by expanding, ordering, initiating and ter-
minating activities. Both declarative and procedural planning
methods are used in this process. Current efforts are targeted
at implementing an initial version of this architecture on our
research Mars rover platforms, Rocky 7 and 8. In addition,
we are working with the NASA robotics and autonomy com-
munities to expand the scope and participation in this archi-
tecture, moving toward a flight implementation in the 2007
time-frame.
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1. BACKGROUND OF THIS EFFORT

History Outside of JPL

The development of Robotics and Autonomy architecture is
as old as the field itself. Therefore, it is not possible here to
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completely review the body of work upon which this effort
builds. Instead, we will simply describe some of the more re-
cent or dominant and trends influencing the new architecture
presented in this document.

Efforts in robotic architectures have largely arisen from a
pragmatic need to structure the software development for ease
of system building. As such, they have grown in scope and
complexity as the corresponding systems have grown. Early
efforts concentrated in detailed software packages [19], or
general frameworks [2]. Only in the last decade, with the
emergence of fast computers with real-time operating sys-
tems, have infrastructures been designed as open-architecture
controllers of modern robot systems [35][27][10].

In parallel with robot control efforts, artificial intelligence
systems for planning/scheduling and execution were devel-
oped which relied on underlying closed-architecture robot
controllers [15]{29]. The tendency of these systems to be
slow and computationally costly led to the emergence of a
minimalist school of thought using Behavior Control [11].
But with faster control layers available, and a general desire
to leverage planning functionality, newer systems implement
a multi-tiered approach that includes planning, execution, and
control in one modern software framework [1]{3].

While these end-to-end architectures have been prototyped,
some problems have emerged. First, there is no generally
accepted standard, preventing leverage of the entire commu-
nity’s effort. This problem has lead to the second, which
is that implemented systems have typically emerge as patch-
work of legacy and other code not designed to work together.
Third, robotics implementations have been slow to leverage
the larger industry standards for object-oriented software de-
velopment, within the Universal Modeling Language (UML)
framework. Therefore, we believe the time is ripe to revisit
robotics and autonomy efforts with fresh effort aimed at ad-
dressing these shortcomings.

History Inside of JPL

The Jet Propulsion Laboratory, California Institute of Tech-
nology (JPL) has a long history in building remotely com-
manded and controlled machines for planetary exploration.



Most of this effort has has concentrated on very simple and
robust execution of linear sequences tediously created by
ground controllers. Areas where expertise has concentrated
on sophisticated on-board closed loop control, have been
largely outside of the traditional areas of robotics, falling in-
stead in the realm of aerospace guidance and navigation. Fur-
ther, the implementation of these solutions have been in hand
tailored software solutions, optimized for specific spacecraft
and limited CPU and memory. Only more recently have con-
cepts from robotics and autonomy started to be used or con-
sidered for flight missions {24][23].

Therefore, the history of robotic efforts at JPL has been pri-
marily within the research program. The oldest of these ef-
forts were in the areas of manipulator and teleoperation sys-
tems, and had limited software or software architecture com-
ponents [8]. One of the first major software architecture ef-
forts was within the Telerobotic Testbed, a large research ef-
fort for developing autonomous, multi-robot, satellite servic-
ing [7]. While a very complex system conforming to the
NASREM architecture [2], it relied on several subsystems
using disparate software paradigms. Except through the dif-
fuse efforts of the individual research participants and their
subsequent assignments, little of this software structure sur-
vive the demise of the Testbed. Afterward, many smaller on-
orbit manipulator research projects existed, each with their
own software implementation: Remote Surface Inspection
(C and VxWorks), Satellite Servicing (C and and assembly),
MOTES (Ada and VxWorks), etc. [34]{9][5]. Each of these
efforts provided parallel duplication of similar functionality
with minimal code sharing due to architectural differences.

In parallel with these robot manipulation efforts were sev-
eral mobile robot efforts, each developing software infras-
tructure in relative isolation. At about the same time as the
Testbed, there was the development of a large Mars Rover
platform name Robby, using C and VxWorks [37]. Research
with Robby ended as there was a paradigm shift from large
rovers with software for deliberative sensing and planning, to
small rovers with reactive behaviors [18]. The fourth of these
“Rocky” vehicles, programmed with C and Forth and without
an underlying operating system, sold the concept of placing
the Sojourner rover on the Pathfinder Mission. However, So-
journer itself, was programmed with software written from
scratch, not inherited from its predecessors.

Only as Sojourner was being built, did a new rover research
begin to address the problem of providing a software infras-
tructure with modularity, reconfigurability, and code re-use
implicit in the design. To this end, a new rover, Rocky 7,
was built, and its development team selected the ControlShell
C++ software development environment [27]{33]. Unfortu-
nately, as subsequent research rover efforts were started, a
new spectrum of control infrastructures re-emerged in rover
tasks (e.g. FIDO, DARPA TMR, Nanorover, etc), repeating
the duplication of efforts seen in manipulation tasks half a
decade before {26][40][32].

In the same time frame as the construction of Sojourner and
Rocky 7 was a large scale effort in Autonomy and Control for
flight, but targeted for cruise and orbit, not surface operations.
Under the aegis of the Deep Space One project and later re-

named the Remote Agent Experiment (RAX) [24], this was a
collaborative effort between JPL and NASA Ames Research
Center (ARC). Emerging from it, was a determination at JPL
to build a fundamentally new software architecture for all fu-
ture missions, name the Mission Data System [13]. MDS is
an object-oriented, state based architecture, and moves radi-
cally away from all previous mission control concepts which
are sequence based. While it was originally targeted for or-
bital insertion and outer-planet mission, it is now addressing
a Mars surface mission scheme for its first use.

Therefore, given the large efforts in software architecture de-
velopment at JPL under the MDS flag, and given the history
of divided efforts in the robotics research community, it is the
objective of authors of this report to put forth a new frame-
work for robot software at JPL and beyond. This report out-
lines the results for the first year, describing the broad design
of the resultant CLARAty architecture, providing some ini-
tial implementation efforts, and outlining the directions for
upcoming construction of end-to-end rover control software
under this new framework.

2. THE CHALLENGE

Having briefly reviewed the history of robot control archi-
tectures, it is apparent that more work is required. In this
section we will summarize the impediments to success that
have existed in the past, outline the reasons for attempting
to overcome them with a new architecture, and describe the
constraints on the solution to be provided.

Impediments to Success

There are numerous impediments to the success of control
frameworks for robotics systems. These may be categorized
as follows:

Programmatic Vision — Implicit in the success of any re-
search endeavor is the need to sustain the effort with fund-
ing, especially early in its development. Typically it has been
difficult to maintain significant research funding for control
architecture development. This is primarily because the end
product is infrastructure, not a new robot system or algorithm.
While this new infrastructure might enable better or faster
system and algorithm development, such indirect results have
been difficult to sell programmatically.

Not Invented Here (NIH) — For the most part, autonomy and
robotic systems are still in the domain of research products,
and not commercial products. Therefore, it is typical for each
research team to to want to develop and grow its own prod-
ucts. This expresses their inventiveness, as well as giving
their work a unique signature used in promotion of their re-
sults.

Fear of unknown products — Closely tied to NIH, is the fact
that research products from outside of one’s team have vary-
ing and unknown levels performance, quality, and support.
Therefore, use of other’s products might not only dilute ones
research identity, but consume valuable effort while trying to
adopt it.



Flexibility — Also, because of the research nature of
robotics, there is still no absolute consensus on how to best
solve the problems that exist, or even which are the most im-
portant problems to solve. Therefore, researchers often de-
sire maximum flexibility from their hardware and software,
to meet the specific needs of new projects. This desire for
flexibility is often at odds with any software framework that
is not specifically tailored to the task. Simply put, no one ar-
chitecture can be optimal for all problems, and if one is too
flexible it quickly loses any structure that gives it value.

Overhead — Often coupled to a desire for flexibility is a need
to optimize performance. This comes in the form of computa-
tional overhead for the robot system, as well as system build-
ing overhead, encountered in the use of software development
products which are unfamiliar or unwieldy.

Critical Mass — Even if a new software infrastructure is rec-
ognized as being valuable, that value might not be realized
unless a large enough group of researchers chooses to stan-
dardize around it. Once such a group exists and provides crit-
ical mass, the standard enables much easier exchange of soft-
ware and ideas, which in theory can “snowball”. However,
it is a difficult decision for any one research team to join a
new standard until critical mass has been reached. This is be-
cause any external standard will require overhead, while the
benefits may only come after critical mass is achieved.

Learning Curve — Human nature and conservative logistics
of any research program provide a resistance to abandoning
well known and understood methods for new ones that re-
quire an investment of time to learn. This is especially true
when projects are on short development cycles, which has
been more true in recent years.

Technical Vision — Because most researchers have had to
develop infrastructure to build their systems, they have de-
veloped opinions about their preferred solutions. While some
are willing to abandon these solutions in favor of an external
product, others have a technical vision which may be at odds
with external products, no matter how mature. Depending
on the strengths of their convictions, some researchers may
not join the larger community in the use of a standard archi-
tecture (unless it is their own). While this may ultimately be
detrimental to their research, it is also detrimental to the com-
munity as well.

Needs for a New Start

Given these impediments to the acceptance of a unifying ar-
chitecture, one may wonder why there should be an impetus
for its creation. The primary reason is that which drives the
desire for robotics in the first place: elimination of the need
for people to waster their time on lesser endeavors. There are
three paths to this goal.

1. Elimination of duplicative efforts which prevent attain-
ment of critical mass:

Parallel Duplication — As previously discussed, there are

often duplicative efforts within both robotic manipulation
and mobility research. This diminishes the final products by
wasting resources on solving the same problems, in different
ways, at the same time.

Serial Duplication — 1t is also evident that as new research
tasks start, they often wipe the slate clean to eliminate old
system problems and lack of familiarity or trust with pre-
vious products. Typically, the only software with legacy is
due solely to a single individual, not the local or extended
community. Obviously, without the ability to bridge to group
ownership, transfer outside of individual institutions is even
more restricted.

2. Follow software community lead:

Open source movement — The value of shared software has
been dramatically illustrated by Linux, GNU, and other
share/free ware products. Typically this has existed within
the desktop PC market, but there is no obvious reason why
this model cannot be leveraged by research software within
the robotics community. As evidence of this fact, there has
recently been an announcement for Intel sponsorship of an
open source Computer Vision Library [20].

Object oriented design — Complementary to the open source
movement, has been the growth of object oriented design for
PC software. In much of the commercial software industry it
dominates. However, this paradigm is largely under-utilized
in robotics, isolating the community.

3. Leverage complimentary efforts:

Software sharing — To build critical mass amongst a world-
wide but relatively small robotics community, it would be ex-
tremely beneficial to have an architecture framework that was
widely accepted. Not only would this enable easier sharing of
design concepts, but, more importantly, it would enable the
direct transfer of software to all parties. Even sharing among
the limited communities of JPL and NASA is currently ar-
duous and therefore rare. A first step would be to eliminate
these hurdles completely.

Mission Data System and X2000 — Recently, NASA has in-
vested heavily in large scale efforts in spacecraft hardware
(X2000) and software (MDS) which promise an infrastruc-
ture to be leveraged and expanded [38][13]. It is to the benefit
of NASA robotics efforts to also use these products where ap-
plicable. Since the spacecraft control problem is very similar
to the general robotics problem, it is anticipated that there
is much to be gained by this leveraging. Obviously other
sources of relevant technology will exist outside of this lim-
ited set, and will be incorporated when applicable.

Constraints on the Solution

Given these needs, there are several issues that will con-
strain the success of an architectural solution. First, there is a
need for Community Acceptance. Without acceptance by the
robotics and autonomy community, both from users and de-
velopers, there can not be a success. Full acceptance is proba-



bly not possible, or even desirable in a growing research area.
However, as described previously, it is important to reach a
level of critical mass, so that users and developers gain more
than they lose from adherence to standards and participation
in software exchange.

Second, it is vital to span the many divides within the nec-
essary user and developer communities. These divides exist
in many forms, between and within robotics and Al research
areas. They can result from a desire to solve different types
of robotics problems, all the way from parts assembly to hu-
manoid interfaces. Or they can result from an emphasis on
different phases of product life cycles, from basic research to
fielded system. Within and across institutions, the differences
can be cultural as well, spanning departments from mechani-
cal engineering to computer science, and organizations from
academia to commercial companies.

Third, there is a required need to leverage existing software in
research and NASA flight efforts. In particular, at JPL there
has been a substantial effort in the new MDS, which is very
similar to the architecture work described herein but has been
largely focused on the problems of zero gravity spacecraft,
not robots operating on planetary surfaces.

Finally, it is a requirement to leverage standard practices in
industry. This is needed to avoid reinvention of the wheel,
and enable NASA robotics efforts to adopt techniques and
solutions commonly employed in commercial products, and
within the global software community.

3. THE CLARATY ARCHITECTURE

In response to these needs and requirements we have devel-
oped the initial framework for a new Autonomous Robot soft-
ware architecture. This section will review this new struc-
ture, discuss its evolutionary differences from its predeces-
sors, introduce each layer of the architecture, and provide an
overview of the interaction between them.

Review of Three Level Architecture

Typical robot and autonomy architectures are comprised of
three levels — Functional, Executive, and Planner as shown
in Figure 1 [17][30][1].

The dimension along each level can be thought of as the
breadth of the system in terms of hardware and capabilities.
The dimension up from one layer to the next can be thought
of as increasing intelligence, from reflexive, to procedural, to
deliberative. However, the responsibilities and height of each
level are not strictly defined, and it is more often than not the
case that researchers in each domain expand the capabilities
and dominance of the layer within which they are working.
The result are systems where the Functional Layer is domi-
nant [28][36]. or the executive is dominant [30][10] or the the
planner is dominant [15][14]. Further, there is still consid-
erable research activity which blurs the line between Planner
and Executive, and questions the hierarchical superiority of
one over the other [21][16].

SYSTEM

INTELLIGENCE

Figure 1. Typical three level architecture.

Another problem with this description is lack of access from
the Planner to the Functional Level. While this is typi-
cally the desirable configuration during execution, it separates
the planner from information on system functionality dur-
ing planning. One consequence is that Planners often carry
their own separate models of the system, which may not be
directly derived from the Functional Level. This repetition
of information storage often leads to inconsistencies between
the two.

A third problem with this description is the apparent equiva-
lence of the concepts of increasing intelligence with increas-
ing granularity. In actuality, each part can have its own hi-
erarchy with varying granularity. The Functional Layer is
comprised of numerous nested subsystems, the executive has
several trees of logic to coordinate them, and the planner has
several time-lines and planning horizons with different reso-
lution of planning. Therefore, granularity in the system may
be misrepresented by this diagram. Worse, it obscures the
hierarchy that can exist within each of these system levels.

Proposed Two Layer Architecture

To correct the shortfalls in the three level architecture, we pro-
pose an evolution to a two-tiered Coupled Layer Autonomous
Robot Architecture (CLARALy), illustrated in Figure 2. This
structure has two major advantages: explicit representation
of the system layers’ granularity as a third dimension !, and
blending of the declarative and procedural techniques for de-
cision making.

The addition of a granularity dimension allows for explicit
representation of the system hierarchies in the Functional
Layer, while accounting for the de facto nature of planning
horizons in Decision Layer. For the Functional Layer, an
object oriented hierarchy describes the system’s nested en-
capsulation of subsystems, and provides basic capabilities at
each level of the nesting. For instance, a command to “move”
could be directed at a motor, appendage, mobile robot, or

LThe convention employed here is to consider lower granularity to mean
smaller granual sizes.
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Figure 2. Proposed two layer architecture.

team. For the Decision Layer, granularity maps to the ac-
tivities time-line being created and executed. Due to the na-
ture of the dynamics of the physical system controlled by the
Functional Layer, there is a strong correlation between its sys-
tem granularity and the time-line granularity of the Decision
Layer.

The blending of declarative and procedural techniques in
the Decision Layer emerges from the trend of Planning and
Scheduling systems that have Executive qualities and vice
versa [30][14]. This has been afforded by algorithmic and
system advances, as well as faster processing. CLARAty
enhances this trend by explicitly providing for access of the
Functional Layer at higher levels of granularity, thus less fre-
quently, allowing more time for iterative replanning. How-
ever, it is still recognized that there is a need for proce-
dural system capabilities in both the Executive interface to
the Functional Layer, as well as the infusion of procedural
semantics for plan specification and scheduling operations.
Therefore, CLARAty has a single database to interface Plan-
ning and Executive Functionality, leveraging recent efforts to
merge these capabilities [16].

The following sections will develop these concepts by provid-
ing an overview of features of both the Functional and Deci-
sion Layers, as well as the connectivity between them.

The Functional Layer

The Functional Layer is both an interface between the soft-
ware and the hardware, and an interface for the Decision
Layer to access basic capabilities of the system. Figure 3
shows a very simplified and stylistic representation of the
Functional Layer. The Functional Layer has the following
characteristics:

Object Oriented — Object oriented software design is desir-
able for several reasons. First, it can be structured to directly
match the nested modularity of the hardware in a robotic sys-
tem. Second, at all levels of this nesting, basic functional-
ity and state information of the system components can be
encoded and compartmentalized in its logical place. Third,

ENVIRONMENT

Figure 3. Proposed Functional Layer.

Robot

Figure 4. Simple example illustrating object hierarchy and
Class inheritance concepts.

proper structuring of the software can use inheritance proper-
ties to manage the complexity of the software development.
Finally, this structure can be graphically designed and docu-
mented using the UML standard.

Figure 4 gives a simplified description of the Object Hierar-
chy found in the Functional Layer. In this diagram, a fourth
Abstraction Dimension has been added to illustrate the in-
heritance structure of the classes in the Functional Layer. At
the bottom, a rover object aggregates arm and locomotor ob-
jects. While these objects comprise a specific My Rover sys-
tem, each is derived from parent classes which are much more
general.

An advantage of this structure is that it makes system exten-




sion much easier. First, multiple copies of the objects can be
instantiated (e.g. two copies of My Rover’s Arm — left and
right). Second, two child classes may inherit all of the Ap-
pendage properties (e.g. My Rover’s Arm and another class,
Your Rover’s Arm, where the latter is somewhat different from
the former).

Moving up the class abstraction hierarchy, inheritance rela-
tionships may get more complicated. Both Appendage and
Locomotor can have a common parent of Coordinated Sys-
tem, which in turn has the same parent as Rover, called Robot.
Also, while the Motor class has no children, it is aggregated
into the Coordinated System class. In this way, motor func-
tionality is specified centrally in one object and available at all
levels below it in the hierarchy, greatly simplifying software
maintenance.

Encoded Functionality — All objects contain basic function-
ality for themselves, accessible from within the Functional
Layer, as well as the Decision Layer. This functionality ex-
presses the intended and accessible system capabilities. The
purpose of this structure is to hide details from the higher lev-
els of abstraction, as well as unifying the system structure.
The latter is true when one member function name is used in
all levels of the hierarchy, representing a capability that is ap-
propriate for that level. Examples include: read, set, move,
status, and so on.

For instance, a move command of a rover platform my be ex-
ecuted with a series of turns in place and straight line moves.
This capability provides a basic service, while hiding the de-
tails of individual steering or wheel moves. However, it may
not satisfy some special need of the Decision Layer, such as
an arc trajectory. In this case, the option exists to access the
subordinate wheel objects directly, to obtain the desired re-
sults.

Resident State — The state of the system components is con-
tained in the appropriate object and obtained from it by query.
This includes state variable values, state machine status, re-
source usage, health monitoring, etc. In this way, the Deci-
sion Layer can obtain estimates of current state or predictions
of future state, for use in execution monitoring and planning.

Local Planners — Whereas the Decision Layer has a global
planner for optimal decision making, it may utilize local plan-
ners that are part of Functional Layer Subsystems. For in-
stance, path planners and trajectory planners, can be attached
to manipulator and vehicle objects to provide standard capa-
bilities without regard to global optimality. Like all other
Functional Layer Infrastructure, the use of such local plan-
ners is an option for the Decision Layer.

Resource Usage Predictors — Similar to local planners, re-
source usage prediction is localized to the objects using the
resources. Queries for these predictions are done by the De-
cision Layer during planning and scheduling, and can be re-
quested at varying levels of fidelity. For instance, the power
consumption by the vehicle for a particular traverse can be
based on a hard-coded value, an estimate based on previous
power usage, or a detailed analysis of the upcoming terrain.

Figure 5. Proposed Decision Layer.

The level of fidelity requested will be based on time and re-
source constraints on the planning stage itself, margins avail-
able for the time window under consideration, as well as the
availability of more detailed estimate infrastructure. In some
cases, subordinate objects may be accessed by superior ones
in the process of servicing a detailed prediction.

Simulation — 1In the simplest form, simulation of the system
can be accomplished by providing emulation capability to all
the lowest level objects that interact with hardware. In this
case, the superior objects have no knowledge of whether they
are actually causing real actions from the robot. Such simu-
lation is a baseline capability of the architecture. However,
it typically can not be done faster than real-time while using
the same level of computer resources. Therefore, it is ad-
vantageous to percolate simulation capability up to superior
objects in the hierarchy. The cost of this is increasing com-
plexity in the simulation computations. For some purposes
such complexity may be valuable. But, as with Resource Es-
timation, levels of fidelity may be specified to provide useful
simulation with reduced computation when desired.

Test and Debug — For initial development and regression
testing as system complexity grows, all objects must contain
test and debug interfaces and have external exercisers.

The Decision Layer

The Decision Layer breaks down high level goals into smaller
objectives, arranges them in time due to known constraints
and system state, and accesses the appropriate capabilities of
the Functional Layer to achieve them. Figure 5 shows a very
simplified and stylistic representation of the Decision Layer.
The Decision Layer has the following characteristics:

Goal Net — The Goal net is the conceptual decomposition of
higher level objectives into their constituent parts, within the
Decision Layer. It contains the declarative representation of
the objectives during planning, the temporal constraint net-
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work resulting from scheduling, and possibly a task tree pro-
cedural decomposition used during execution.

Goals — Goals are specified as constraints on state over
time. As such they can be thought of as bounding the sys-
tem and specifying what shouldn’t be done. They may be
decomposed into subgoals during elaboration, and arranged
in chronological order during scheduling. Resulting goal nets
and schedules may be saved, or recalled [13].

Tasks — Tasks are explicitly parallel or sequential activities
that are tightly linked. They result from the fixed procedural
decomposition of an objective into a sequence, which is pos-
sibly conditional in nature. In contrast to Goals, Tasks specify
exactly what should be done [30].

Commands — Commands are unidirectional specifications
of system activity. Typically they provide the interface be-
tween the terminating fringes of the goal net, and the capabil-
ities of the Functional Layer. Closed loop control within the
Decision Layer is maintained by monitoring status and state
of the system as commands are executed [4].

The Line — ‘The Line’ is the border between Decision-
making and Functional execution [13]. It exists at the instan-
taneous lower border of the elaborated goal net, and moves to
different levels of granularity according to the current elab-
oration. When projected on the Functional Layer, it denotes
the border below which the system is a black box to the De-
cision Layer.

State — The state of the Functional Layer is obtained by
query. The state of the Decision Layer, which is essentially its
plan, the active elaboration, and history of execution, is main-
tained by this layer. It may be saved, or reloaded, in whole or
part.

Layer Connecrivity

Given the two architectural layers, Functional and Decision,
there is flexibility in the ways in which these may be con-
nected. At one end of the spectrum is a system with a very
capable Decision Layer, and with a Functional Layer that pro-
vides only basic services. At the other end of the spectrum is
a system with a very limited Decision Layer that relies on a
very capable Functional Layer to execute robustly given high
level commands. If both a capable Decision and Functional
Layer are created then there may be redundancy — however,
this is seen as a strength of CLARAty, not a weakness. It
allows the system user, or the system itself, to consider the
trade-offs in operating with the interface between the layers
at a lower or higher level of granularity.

At lower granularity the built in capabilities of the Functional
Layer are largely bypassed. This can enable the system to
take advantage of globally optimized activity sequencing by
the Decision Layer. It also enables the combination of latent
functionality in ways that are not provided by aggregation of
objects at higher levels of granularity in the Functional Layer.
However, it requires that the Decision Layer be aware of all
the small details of the system at lower granularity, and have

Figure 6. Proposed relationship of Function and Decision
Layers.

time to process this information. For mission critical oper-
ations, it may be worth expending long periods of time to
plan ahead for very short sequences of activity. However, this
model can not be employed always, since it will force the
system to spend a disproportionate amount of time planning,
rather than enacting the plans. While the plan may provide
optimality during its execution, inclusion of planning time as
a cost may force the system be very suboptimal.

To avoid this problem of overburdening the Decision Layer,
robust basic capabilities are built in to the Functional Layer
for each object in its hierarchy. This allows the interface be-
tween the layers to exist at higher granularity. In this case, the
Decision Layer need not second guess Functional Layer algo-
rithms, and can also use more limited computing resources.
Particularly in situations where resources usage is not near
margins, or subsystems are not operating in parallel, it is
much more efficient to directly employ the basic encoded
functionality. It also directly allows for problem solving at
the appropriate level of abstraction of the problem, both for
the software and the developers.

Time-line Interaction

The interaction of the two architectural layers, can also be
understood by considering the creation and execution of ac-
tivities on a time-line. Figure 6 shows the two layers with
the sequence of activation highlighted in green. In the De-
cision Layer, high level goals are decomposed into subordi-
nate goals until there is some bottom level goal that directly
accesses the Functional Layer. During planning and schedul-
ing, this process occurs for queries of resource usage and lo-
cal plans. If high fidelity information is requested from the
Function Layer, such as when resource margins are tight, then
the Functional Layer object may also need to access its sub-
ordinates to improve the predictions.
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Figure 7. Example of system execution time-line.

The resultant activity list and resource usage is placed on a
time-line as shown in Figure 7, activities on the top and re-
source usage on the bottom. Scheduling will optimally order
these activities to enable goal achievement while not violating
resource constraints. This process, however, must be frozen
at some point sufficiently far in the future, so that the schedule
is self-consistent at the time it is meant to be executed. Also,
the time horizon up to which the planning and scheduling is
done is also limited to constrain the problem. Both of these
time boundaries are shown in the figure.

Inside the Plan Freeze boundary, it is the responsibility of
an executive to initiate actions by accessing the Functional
Layer. This process is illustrated in Figure 6 by the arrows to
the Functional Layer, and the green shading of one portion of
the object hierarchy it contains. As the actions take place, re-
sources are consumed, typically in slightly different amounts
than predicted. The usage is reported to the Decision Layer,
where discrepancies are used to modify the future projections
of resource availability on the time-line, forcing replanning to
occur. This cycle is indicated by the green arrows in Figure 7

The process described is typical of systems where the pro-
cedural components of the executive are separated from the
declarative components of planning and scheduling. It is not
necessary that the boundary between planning and execution
exist at a specific point in time — planning and scheduling
can occur very near to the present, while executive-style pro-
cedural decomposition may be incorporated into future plan-
ning. Therefore, the plan freeze boundary in Figure 7 is not
required for CLARALy, and the potential cross-coupling of
Planner and Executive is one of the primary reasons for merg-
ing both into a single Decision Layer. The format of these
merged activities, and the interface between them, is currently
under development.

Finally, it is important to note that there is also a migra-
tion of some executive-style procedural expansion into the
Functional Layer as well. Each object has built in function-
ality which will have a procedural decomposition of its ac-
tions, and may have it own mini-executive, or even planner.
CLARAty does not preclude this, and allows for this func-
tionality to be leveraged or bypassed, depending on the de-
sire of system designers, and the capabilities of the Decision
Layer.

4. IMPLEMENTATION

While the prototyping and implementation of the CLARAty
architecture is still in its early stages, some specifications and
results are important to mention, illustrating the direction of
this work. Below are described some of the tool and stan-
dard choices, heritage software that will be included into the
framework, and prototyping status at this time.

Tools and Standards

The following tools and standards have been accepted for
CLARALty and its development;

The Universal Modeling Language — UML is to be used for
system design and documentation. The intent is for full use
of UML, including templates.

C++ Language — C++ will be used to create CLARALty, due
to its wide use in academia and industry, the need for an ob-
ject oriented implementation, and the requirements of real-
time software implementation.

OS support — To provide both real-time software supports
while allowing for workstation development, CLARAty will
be constructed to run under VxWorks, Linux, and Solaris. Ex-
tension to other operating systems in the future is possible.

Standard Template Library — In the spirit of leveraging off
public domain standards employed by the software commu-
nity, software and specifications such as the Standard Tem-
plate Library, will be employed where possible.

Software Development Tools — While it is possible to build
all or parts of CLARAty by writing software directly with a
text editor, it is desirable to employ a standard tool for orga-
nizing, structuring, and styling the software in a like manner
across all developers. Consideration has been give to tools
such as Rhapsody™™ and Visio” ™, but no decision is final.
Since it is the desire to not prevent wide participation in use
of CLLARALy, tools with large costs are not desirable.

Documentation — 1t is important to provide documentation
of all components of the system in various forms. The UML
was chosen partly for this reason. Other tools for in-line code
documentation standardization are being investigated. The
intent is to leverage current tools and standards, not to create
new ones.

Heritage

While CLARALy is a new architecture design, its design and
prototype construction will rely on some important existing
infrastructure. First, some of the initial concepts for the Func-
tional Layer object hierarchy were developed by the Plane-
tary Dextrous Manipulators task at JPL [25]. Second, we will
use the research rovers Rocky 7 and Rocky 8 to frame some
of the problems, and as testbeds for prototyped solutions.
Third, many years of technology development at JPL. and
other NASA research facilities have provided valuable soft-
ware which will be implemented within the CLARAty frame-



work. Among the software slated for inclusion is: JPL stereo
vision [39] Carnegie Mellon University and JPL path plan-
ning [31][22], estimation [6], planning and scheduling [12],
execution decomposition and monitoring [30], and kinematic
and dynamics computing [41].

5. SUMMARY

This paper has presented our new CLARALty architecture for
robotic autonomy software. We have briefly reviewed the his-
tory of this topic, potential impediments to success, needs
for continued effort, and constraints on acceptable solutions.
Given these circumstances, we have presented an evolution-
ary modification of prior architectural structure, which ad-
dresses the needs of merging procedural and declarative plan-
ning, while providing an object-oriented encapsulation of
system functionality. The new CLARALy structure is, there-
fore, comprised of Decision and Functional Layers, and a
complete overview of each of these, and their interaction, has
been provided. Finally, a brief description of current imple-
mentation efforts was provided.
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